Accelerated Scientific Discovery with Al-driven Experiments in support of IFE

IFE Workshop

Feb. 24, 2022

Acknowledgements

D.A. Mariscal¹, B.Z. Djordjevic¹, S. Ali¹, R. Anirudh¹, K. Bhardwaj¹, T. Bremer¹, C. Curry², S. Feister³, E.S. Grace⁴, M. Gokhale¹, V. Gopalaswamy⁵, P. Hatfield⁶, P. Heuer⁵, R. Hollinger⁹, S.A. Jacobs¹, B. Kailkhura¹, A.J. Kemp¹, N. Lemos¹, T. Ma¹, M. MacDonald¹, M.J-E. Manuel⁷, C. McGuffey⁷, C.A.J. Palmer⁸, J.L. Peterson¹, H. Rinderknecht⁵, J.J. Rocca⁹, J.J. Ruby¹, A. Sarkar¹, R.A. Simpson¹⁰, G.G. Scott¹, M.J.V. Streeter⁸, K. Swanson¹, S. Wang⁹, G.J. Williams¹, G. Zeraouli⁹

Colorado State University, Fort Collins, Colorado, USA

¹⁰Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

¹Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America

²SLAC National Accelerator Laboratory, Menlo Park, CA, 94025 USA

³Department of Computer Science, California State University Channel Islands, Camarillo, CA 93012 USA

⁴School of Physics, Georgia Institute of Technology, Atlanta, GA, United States of America

⁵Laboratory for Laser Energetics, University of Rochester, Rochester, NY, USA.

⁶Clarendon Laboratory, University of Oxford, Parks Road, Oxford, UK

⁷General Atomics, San Diego, CA

⁸Queen's University Belfast, University Road, BT7 1NN Belfast, United Kingdom

⁹Electrical and Computer Engineering Department and Physics Department

This community has already identified many of the applications of ML/Al for IFE research

Scott, G.G.

Lawrence Livermore National

Laboratory

High repetition rate diagnostics with integrated machine learning analysis

for a new paradigm of actively controlled Inertial Fusion Energy

experiments

Heuer, Peter Laboratory for Laser Energetics,

University of Rochester

Accelerating the science, technology, and workforce base for inertial fusion

energy with a proposed high

repetition rate facility

Gopalaswamy, V. Lawrence Livermore National

Laboratory

Validating IFE Concepts with Machine

Learning Driven Design Optimization

Summary

Integrating Machine Learning and Artificial Intelligence will be key to full utilization of HRR for accelerated scientific discovery

Key Metrics

- Laser technology has enabled high-energy (10's J-kJ) multi-Hz operation → data throughput by ~36,000X.
- Control systems still require "hands on" operation. Need ML for fine control/stability for IFE power plant.
- "Big Data" (TB/s?) handling through AI will be necessary to filter, analyze, and retain important data.
- ML analyzed diagnostic data

 μs-ms timescales (>1,000X speed)
- Surrogate models from ensemble simulations to scan multi-dimensional parameter space. >1,000X faster
- Comparison/retraining during HRR experimental operations → optimization and exploration

The revolution in computational power and machine learning techniques paves the way for new approaches in data analysis, prediction, and comparing simulation and experiment

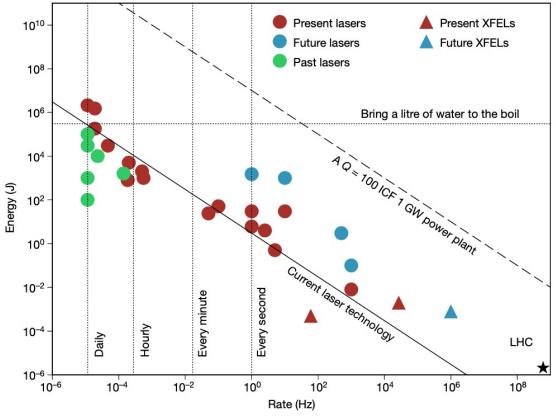
Motivation

Currently we make use of a number of premier facilities around the US & the world to conduct forefront HED science

HED science has focused on large, energetic drivers that are mostly single-shot (>shot/30 min)

Current/Future Lasers

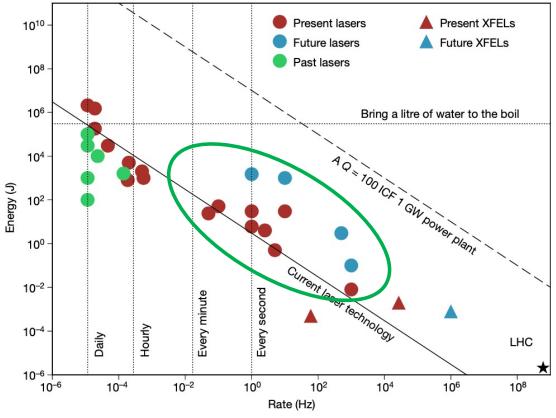
In the near-term, laser drivers are moving toward higher repetition rates



P. Hatfield, et al., "The data-driven future of high-energy-density physics", Nat. Persp. (2021)

Current/Future Lasers

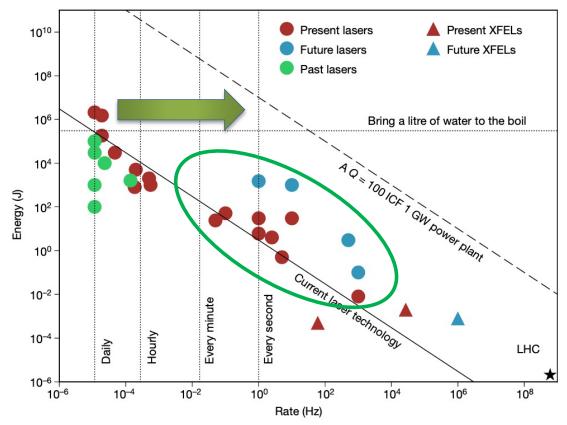
In the near-term, laser drivers are moving toward higher repetition rates



P. Hatfield, et al., "The data-driven future of high-energy-density physics", Nat. Persp. (2021)

Current/Future Lasers

Gaps in rep-rate and energy (scale) will need to be bridged for IFE, but there are still many challenges to enabling true HRR experiments

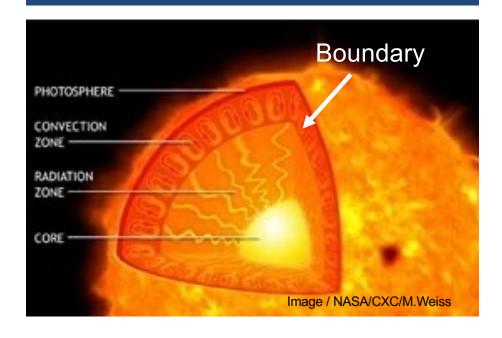


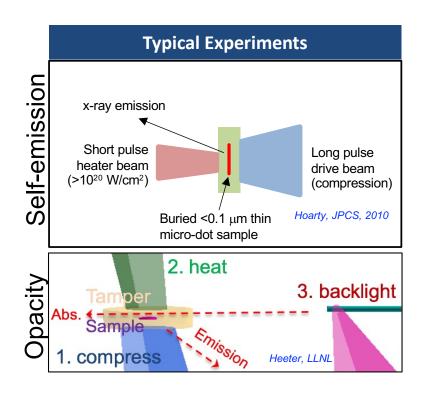
P. Hatfield, et al., "The data-driven future of high-energy-density physics", Nat. Persp. (2021)

Examples: Science

HRR will provide the 10,000's of shots to adequately provide opacity and radiative properties benchmark data

Solar Model Zones

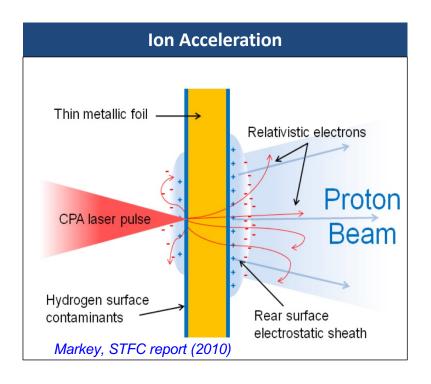


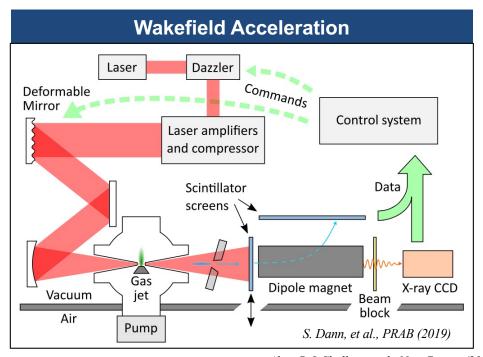


Astro, ICF & HED at T>200 eV, r>0.1 g/cc are limited by under-validated radiative properties models that require rigorous validation

Examples: Sources

HRR will generate <u>consistent and reproducible</u> secondary source particle/radiation beams for probing/driving experiments





Also: R.J. Shalloo, et al., Nat. Comm. (2021)

High brightness, high flux sources of x-rays, g's, energetic particles (electrons, ions, neutrons, positrons) will enable numerous applications

Examples

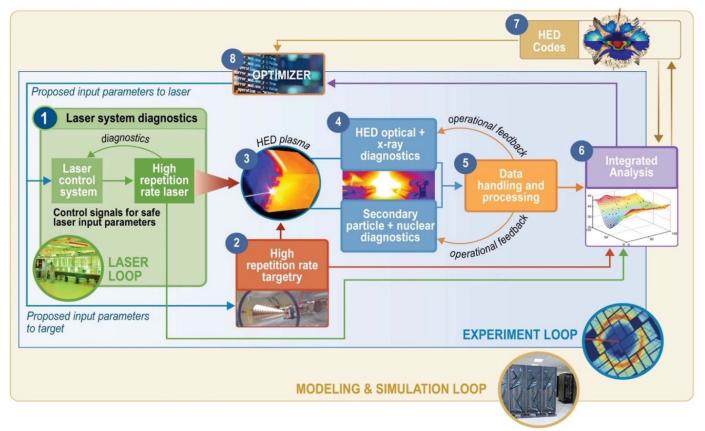
Many classes of IFE-relevant experiments will benefit from different features of highthroughput experiments

- i. Laser plasma instabilities
 - → Laser pulse shapes/plasma environments
- ii. dynamic compression physics
 - → probe new phase space
- iii. non-equilibrium physics in warm dense matter
 - → trace evolution of the system in time
- iv. materials EOS and opacity
 - → statistics to minimize error bars
- v. particle and radiation beams**
 - → consistency, reproducibility, high average brightness
- vi. plasma nuclear physics
 - → high average numbers to probe rare or subtle nuclear rxns**

**See G.J. Williams WP

HRR System

HRR is not just driver @ 10 Hz → a fully integrated system that leverages ML and Al in many domains for autonomous operation



T. Ma, et al., "Accelerating the rate of discovery: toward high-repetition-rate HED science". PPCF, (2021)

Challenges that stem from high-rep-rate experiments are starting to be addressed

Machine Learning & Artificial Intelligence are already making large impacts in scientific discovery & fusion

Perspective The data-driven future of high-energy-density physics https://doi.org/10.1038/s41586-021-03382-w Peter W. Hatfield¹⊠, Jim A. Gaffnev²⊠, Gemma J. Anderson²⊠, Suzanne Ali², Luca Antonelli³

Application of machine learning techniques at the **CERN Large Hadron Collider**

F.F. Van der Veken*a,b, G. Azzopardia,b, F. Blancc, L. Coylea,c, E. Fola,d,

Suzan Basegmez du Pree⁴, Jonathan Citrin⁵, Marta Fajardo⁶, Patrick Knapp⁷, Brendan Kettle⁸,

Taisuke Nagayama7, Charlotte A. J. Palmer9, J. Luc Peterson2, Steven Rose1.8, J J Ruby10,

Bogdan Kustowski², Michael J. MacDonald², Derek Mariscal², Madison E. Martin²,

Carl Shneider¹¹, Matt J. V. Streeter⁸, Will Trickey³ & Ben Williams¹²

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 48, NO. 1, JANUARY 2020

https://doi.org/10.1038/s41586-021-04301-9

Received: 14 July 2021

Accepted: 1 December 2021

Published online: 16 February 2022

Transfer Learning to Model Inertial Confinement **Fusion Experiments**

Demis Hassahis¹ & Martin Riedmiller^{1,3}

Magnetic control of tokamak plasmas

through deep reinforcement learning

K. D. Humbird[©], J. L. Peterson, B. K. Spears, and R. G. McClarren

Automated repair of laser damage on National Ignition Facility optics using machine learning

S. Trummer, G. Larkin, L. Kegelmeyer, M. Nostrand, C. Karkazis, D. Martin, R. Aboud, T.

Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 USA

Cognitive simulation models for inertial confinement fusion: Combining simulation and experimental data

Cite as: Phys. Plasmas 28, 042709 (2021); https://doi.org/10.1063/5.0041907 Submitted: 04 January 2021 • Accepted: 26 March 2021 • Published Online: 27 April 2021

🗓 K. D. Humbird, 🗓 J. L. Peterson, J. Salmonson, et al.

Deep learning: A guide for practitioners in the physical sciences

Jonas Degrave^{1,3}, Federico Felici^{2,3,∞}, Jonas Buchli^{1,3,∞}, Michael Neunert^{1,3}, Brendan

Diego de las Casas¹, Craig Donner¹, Leslie Fritz¹, Cristian Galperti², Andrea Huber¹,

James Keeling¹, Maria Tsimpoukelli¹, Jackie Kay¹, Antoine Merle², Jean-Marc Moret²,

Seb Noury¹, Federico Pesamosca², David Pfau¹, Olivier Sauter², Cristian Sommariva²,

Stefano Coda², Basil Duval², Ambrogio Fasoli², Pushmeet Kohli¹, Koray Kavukcuoglu¹,

Tracey¹,3™, Francesco Carpanese¹.2,3, Timo Ewalds¹,3, Roland Hafner¹,3, Abbas Abdolm

Cite as: Phys. Plasmas 25, 080901 (2018); https://doi.org/10.1063/1.5020791 Submitted: 27 December 2017 . Accepted: 26 June 2018 . Published Online: 15 August 2018

Brian K. Spears, James Brase, Peer-Timo Bremer, Barry Chen, John Field, D Jim Gaffney, Michael Kruse, D Steve Langer, Katie Lewis, D Ryan Nora, D Jayson Luc Peterson, Jayaraman Jayaraman Thiagarajan, Brian Van Essen, and Kelli Humbird

ORIGINAL ARTICLE

Ensemble simulations of inertial confinement fusion implosions

Ryan Nora[®] | Jayson Luc Peterson | Brian Keith Spears | John Everett Field | Scott Brandon

Received: 24 June 2020

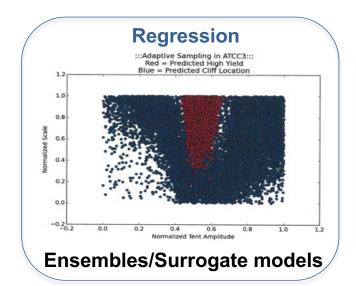
Accepted: 22 February 2021

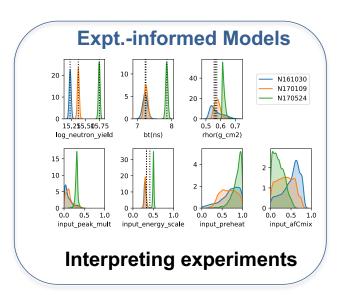
Published online: 19 May 2021

WILEY

Examples: ML Apps

ML can organize & analyze large data sets, help with safe driver operation, and can incorporate experimental data to build real-world-informed models





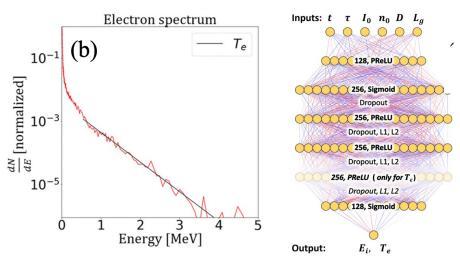
Advances in computational power and ML techniques enable new approaches to data analysis, prediction, and comparing simulations & experiments

ML Examples: Simulations

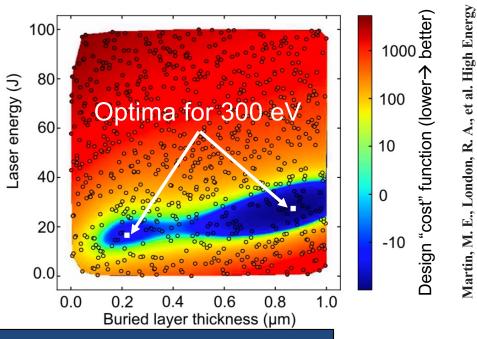
ML/Al are being used to explore vast parameter spaces, bridge multi-scale multiphysics multi-fidelity simulations, and optimize designs

Ensemble PIC Modeling for Particle Source

Ensemble HYDRA Modeling for Experimental Design



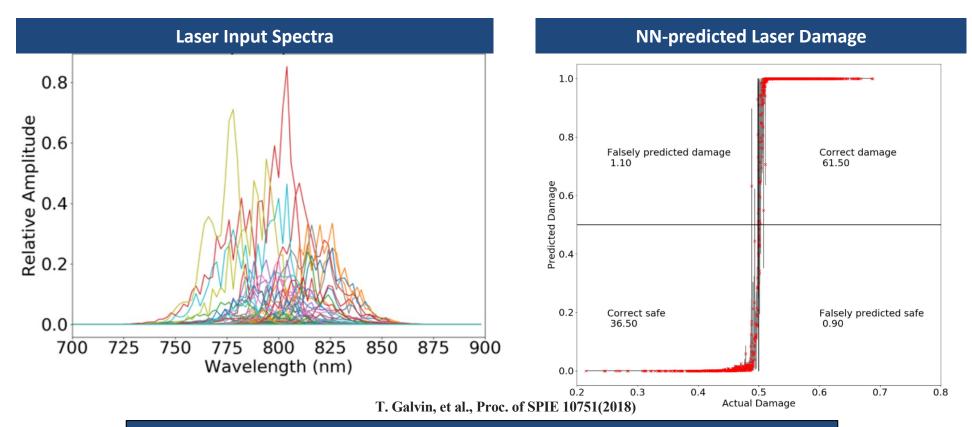
Djordjević, B. Z., et al. Physics of Plasmas, 28(4), 043105.



Simulations have a significant head start on leveraging ML → blueprints for experiments at HRR

ML Examples: Simulations

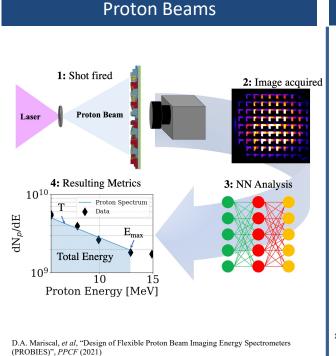
ML in tandem with accurate models can be trained to ensure safe and accurate driver operation



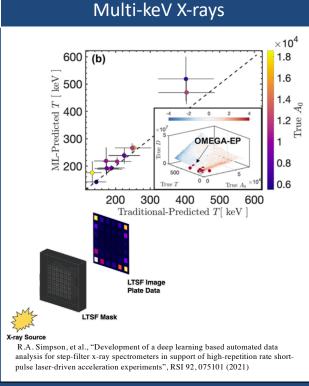
Crucial in science experiments and for IFE → cannot afford downtime

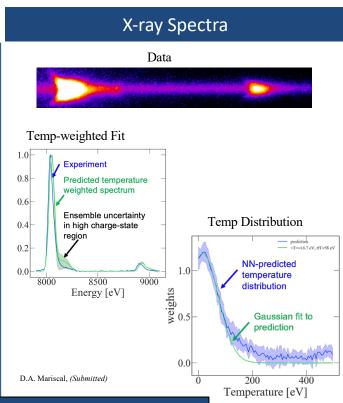
ML Examples: Diagnostics

Diagnostics must be HRR-capable while remaining robust to extremely hostile experimental environments (EMP, neutrons, etc.)



Lawrence Livermore National Laboratory

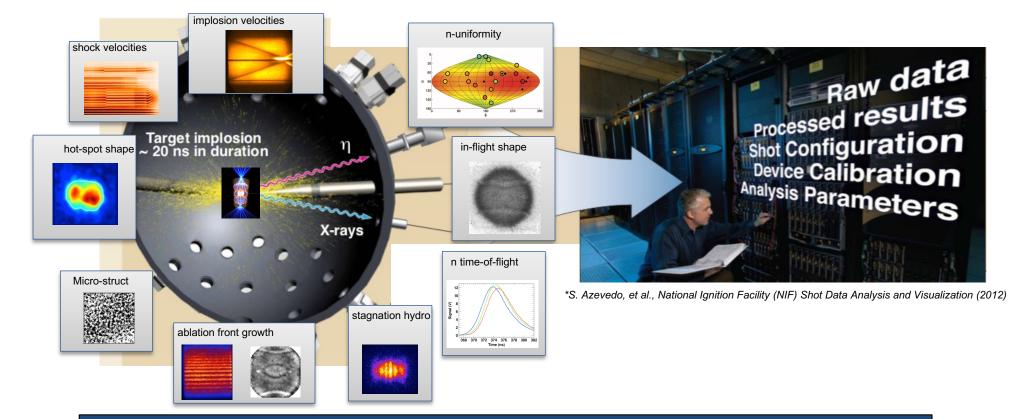




Incorporating ML into diagnostics (edge) will be necessary for rapid and accurate analysis that leaves time for on-the-fly decisions**

Data Handling

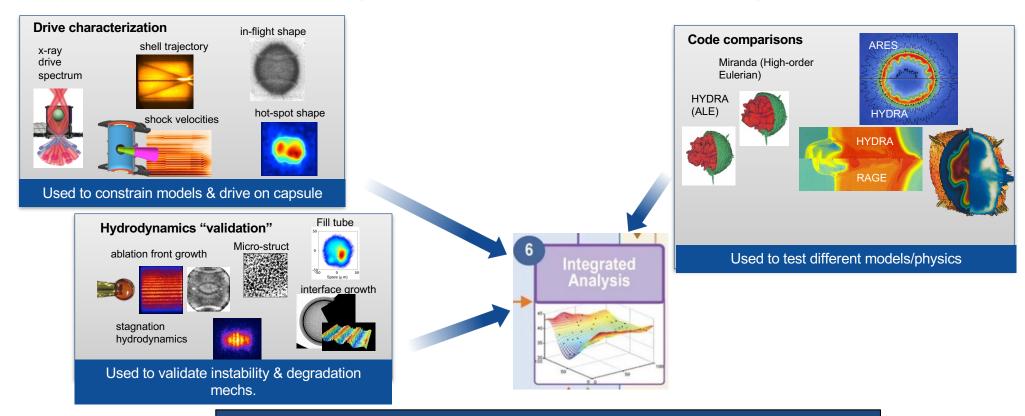
ML can help processing/storing data gathered from high rep-rate experiments



Leverage knowledge from low shot-rate facilities (lasers, pulsed-power) and high reprate facilities (accelerators) to handle data streams

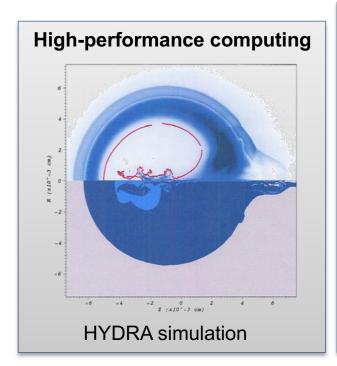
Data Handling

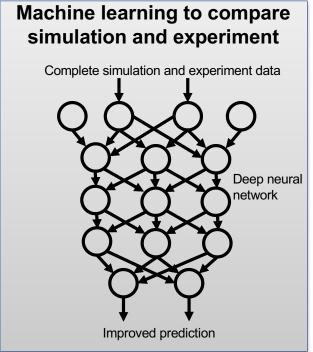
Heterogenous data is used to benchmark HED codes → design the next generation of experiments (currently over weeks/months/years)

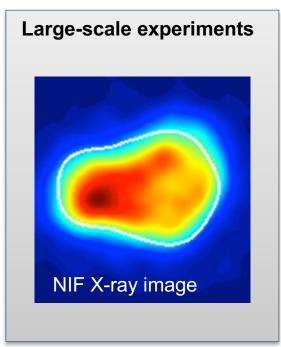


Reduced data representations will be necessary for experiments and simulations to "communicate"

Machine learning allows us to improve predictive modeling across applications



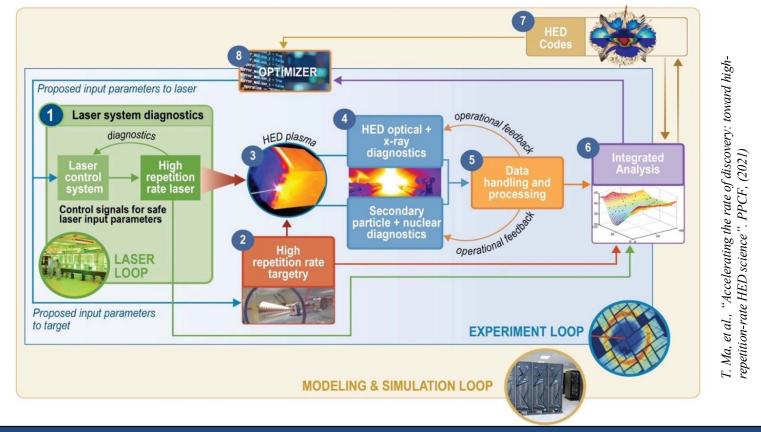




Machine learning will allow us to use our full data sets to make our models more predictive

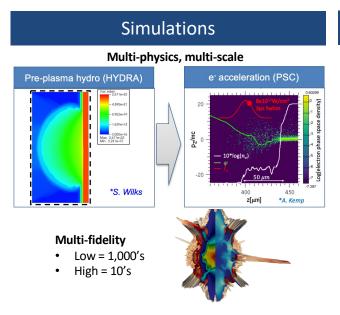
Recent demos: Humbird, et al., IEEE TRANS PLAS SCI 48, (2020), Gopalaswamy, Varchas, et al. Nature 565.7741 (2019)

Most of the enabling technology has been demonstrated → must be integrated



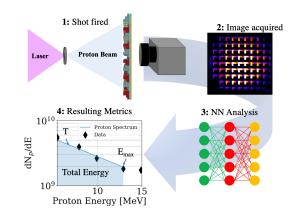
ML & Al will be crucial to increasing the rate while maintaining high fidelity

To increase the rate of learning from HRR facilities in support of IFE, experiments and simulations must be integrated through ML and Al



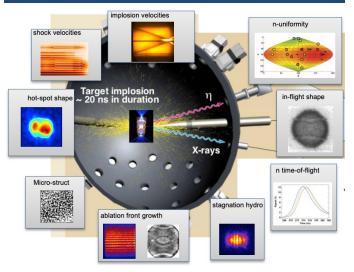
 Connect multi-physics, multiscale, multi-fidelity models

Experiments



 Rapid, accurate, heterogeneous data analysis → compared to simulation models

Data Handling



Pipelines/filtration/storage

Tech should be deployed & tested on existing facilities/capabilities to build up to full IFE → will contribute to HED, ICF, NNSA missions, LaserNetUS, etc. along the way

